Create Smaller,
Smarter Quick-
B: JIC Programs

PC World’s programming
whiz and editor of Star-
Dot-Star demonstrates
some state-of-the-art
tricks with QuickBASIC.

What you need: QuickBASIC 4.5

I users have long relied on
BASIC’s straightforward syntax
to obtain quick results. But basic
BASIC is short on structured
programming capabilities, which
can conserve memory and make
program logic easy to follow. En-
ter Microsoft Quick BASIC 4.5.

QuickBASIC’s structured pro-
gramming aids and built-in intel-
ligence form a software develop-
ment tool that rivals the powers
of C and Pascal. To highlight
some of these new abilities, let’s
explore a sample utility that re-
formats text into newsletter-
style columns.

Text In, Software Out

First, enter COLUMNS.BAS
(see LISTING 1) into QuickBASIC’s
syntax-checking editor. As you



« HOW TO Tips & Techniques

type in the function and sub-
modules, QuickBASIC automat-
ically opens a new window and
generates the DECLARE state-
ments at the top of the program
listing, so you can skip typing
them in. Press <F2> to move
between program modules.

Next, compile the program
using the Run menu’s Make
EXE File command, exit Quick-
BASIC, then run the program
from the DOS prompt. Or, sim-
ply run the program from with-
in QuickBASIC by pressing
<Shift>-<F5>. Once running,
COLUMNS prompts you to enter
the name of a text file to process
(for the purposes of this tutorial,
an unformatted ASCII file of
several 20-character lines is
best). At the subsequent
prompts, press <Enter> to dis-
play output on the screen, then
specify 3 columns, 15 lines per
column, 25 characters per col-
umn, and 4 blank lines between
pages. You should see your for-
matted text zip by at breakneck
speed. To save the output to
disk, rerun COLUMNS and
supply an output file name (or
LPT1L, to print the listing) at the
second prompt.

COLUMNS.BAS imposes no
limits on file length, number of
columns, or spacing. Be pre-
pared to experiment, though, as
some values can produce strange
results. For example, a column
width narrower than the longest
text-file line creates gibberish.
To be safe, always keep a backup
copy of your original text.

Inside COLUMNS.BAS
COLUMNS.BAS exploits four
advanced QuickBASIC features:
the CALL statement used with
SUB procedures, structured DO
loops, local variables, and
FUNCTION procedures.

190_PC WORLD JUNE 1989

DECLARE SUB ReadlLines (MaxLinesX, NumLinesX)
DECLARE SUB WriteLines (NumLinesX)

DECLARE FUNCTION GetOptions% ()

DECLARE SUB Openfiles ()

COMMON SHARED NumColumns AS INTEGER
COMMON SHARED LinesPerColumn AS INTEGER
COMMON SHARED ColumnWidth AS INTEGER
COMMON SHARED BlankLines AS INTEGER

CALL OpenFiles
MaxLinesX = GetOptionsX

DIM SHARED TextLines$(1 TO MaxLinesX)
DO UNTIL EOF(1)

CALL ReadLines(MaxLinesX, NumLinesX)
CALL WriteLines(NumLinesX)

LOOP

CLOSE #1 ' Close input file
CLOSE #2 ' Close output file
END ' End of main module

FUNCTION GetOptionsX
INPUT “Number of columns"; NumColumns
INPUT “Number of Lines per column®; LinesPerColumn
INPUT "Number of characters per column®:; ColumnWidth
INPUT “Number of blank lines between pages™; BlankLines
GetOptionsX = NumColumns * LinesPerColumn

END FUNCTION

SUB OpenFiles
INPUT “Read from what file"; InFileName$
IF InFileName$ = """ THEN END
OPEN InFileName$ FOR INPUT AS #1
INPUT “Write to what file (Enter=screen)"; OutFileName$
IF OutFileName$ = “" THEN OutFileName$ = “scrn:"

OPEN OutFileName$ FOR OUTPUT AS #2

SUB ReadLines (MaxLinesX, NumLinesX)
' Read up to MaxlLines strings or to end of file

NumLinesX = 0

DO UNTIL EOF(1) OR NumLinesX = MaxLinesX

NumL inesX = NumLinesX + 1

LINE INPUT #1, TextLines$S(NumLinesX)

(continues)

LISTING 1: COLUMNS.BAS, a texi-formatting utility, demonsirates many structured progrom-
ming techniques now available o QuickBASIC programmers.

The program’s 18-line main as shown in the calls to Read-
module (from the first DE- Lines and WriteLines). This
CLARE SUB statement to the ability to pass variables to sub-
‘End of main module’ comment) programs is one reason for
contains CALL:s to three subpro- QuickBASIC’s newfound popu-
grams—OpenFiles, ReadLines, larity among developers.
and WriteLines. CALL state- Structured loops make pro-
ments transfer control to subpro- gram logic easier to understand
grams, optionally passing pa-

rameter values (in parentheses,




HOW TO Tips & Techniques
. o ———

LoOP

' Erase any left over strings in TextLiness()
FOR iX = NumLinesX + 1 TO MaxLinesX

TextLines$(i%) = nn
NEXT iX
END SUB

SUB WriteLines (NumLinesX)

' Write multiple-column text
FOR iX = 1 TO LinesPerColumn

FOR j% = 0 TO NumColumns - 1
s$ = TextLines$(iX + jX * LinesPerColumn)

PRINT #2, s$;

IF jX < NumColumns -

1 THEN

PRINT #2, SPC(ColumnWidth - LEN(sS$));

END IF
NEXT jX

PRINT #2, ' Start new output line

NEXT iX

' Add blank lines between pages
FOR i% = 1 TO BlankLines

PRINT #2,
NEXT iX
END SUB

LISTING 1: (continved)

by moving the bulk of the code
into subprograms. For instance,
the DO loop in the main module
repeatedly calls ReadLines and
WriteLines until it reaches the
end of the input text file. The DO
loop in ReadLines loads up to
the specified maximum number
of strings (MaxLines%) into an
array. Such statements are far
simpler to understand than non-
structured, GOTO-ridden BA-
SIC code.

QuickBASIC’s use of local
variables helps eliminate bugs,
including those caused by
variable-name conflict, a com-
mon logic error. Because local
variables are “visible” only to
statements within the subpro-
gram where the variables are
defined, conflicts with identically
named variables elsewhere can't
occur. And local variables con-
serve memory because values in
multiple modules can share the
same RAM locations,

192 PC WORLD JUNE 1989

The variables i% and j% in
WriteLines are local and there-
fore invisible to the rest of COL-
UMNS.BAS. Similarly, Max-
Lines% and NumLines% are
local to the main module. The
values of these variables are
available to ReadLines because
the variable names are passed to
the submodule as parameters by
the CALL ReadLines statement.
Only global variables, which
are declared with COMMON
SHARED statements, are visi-
ble to every program module and
funetion.

FUNCTION procedures are
subprograms that return a value
when called; they work similarly
to the way variables do in BA-
SIC expressions. For example,
the GetOptions% function re-
turns the number of strings re-
quired for one output page, a val-
ue the program’s main module
uses to dimension string array
TextLines$.

Of course, there’s more to
QuickBASIC than one article

can cover. But even a few high-
lights should convince anyone
who wants quick, clean code to
give QuickBASIC a closer look.
—Tom Swan

Alfred Glossbrenner’s many
books cover communications
and personal computing. His
latest is Alfred Glossbrenner’s
Master Guide to Free Software
for IBMs and Compatibles (St.
Martin’s Press, New York, 1989).
Richard Jantz wrote Ventura
Publisher 2.0 for the IBM PC:
Mastering Desktop Publishing
(John Wiley & Sons, New York,
1989) and The Complete Scanner
Handbook (Peachpit Press,
Berkeley, California, 1989). Tom
Swan is a contributing editor for
PC World and the author of Mas-
tering Turbo Pascal 4.0 (Howard
W. Sams & Co., Indianapolis,
Indiana, 1988) and Mastering
Turbo Assembler (Howard W.
Sams & Co., 1989). ®




